Geometric classification of simple graph algebras
نویسندگان
چکیده
منابع مشابه
Geometric Classification of Commutative Algebras of Ordinary
1. The purpose of this paper is to give a geometric classification of all commutative algebras consisting of linear ordinary differential operators whose coefficients are scalar-valued functions. The problem of determining commuting ordinary differential operators has a long history in mathematics – it started in 1879. Since then it has been studied by many people in various contexts and from d...
متن کاملSome Intrinsic Properties of Simple Graph C-algebras
To a directed graph E is associated a C∗-algebra C∗(E) called a graph C∗algebra. There is a canonical action γ of T on C∗(E), called the gauge action. In this paper we present necessary and sufficient conditions for the fixed point algebra C(E) to be simple. Our results also yield some structure theorems for simple graph algebras.
متن کاملClassification of sectors of the Cuntz algebras by graph invariants
A unitary equivalence class of endomorphisms of a unital C∗-algebra A is called a sector of A. We introduced permutative endomorphisms of the Cuntz algebra ON in the previous work. Branching laws of permutative representations of ON by them are computed by directed regular graphs. In this article, we classify sectors associated with permutative endomorphisms of ON by their graph invariants conc...
متن کاملdynamic coloring of graph
در این پایان نامه رنگ آمیزی دینامیکی یک گراف را بیان و مطالعه می کنیم. یک –kرنگ آمیزی سره ی رأسی گراف g را رنگ آمیزی دینامیکی می نامند اگر در همسایه های هر رأس v?v(g) با درجه ی حداقل 2، حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k، به طوری که g دارای –kرنگ آمیزی دینامیکی باشد را عدد رنگی دینامیکی g می نامند و آنرا با نماد ?_2 (g) نمایش می دهند. مونت گمری حدس زده است که تمام گراف های منتظم ...
15 صفحه اولClassification of Simple C * -algebras of Tracial Topological
We give a classification theorem for unital separable simple nuclear C∗-algebras with tracial topological rank zero which satisfy the Universal Coefficient Theorem. We prove that if A and B are two such C∗-algebras and (K0(A),K0(A)+, [1A], K1(A)) = (K0(B), K0(B)+, [1B ], K1(B)), then A = B.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ergodic Theory and Dynamical Systems
سال: 2012
ISSN: 0143-3857,1469-4417
DOI: 10.1017/s0143385712000260